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SUMMARY

A new grid-free upwind relaxation scheme for simulating inviscid compressible �ows is presented in
this paper. The non-linear conservation equations are converted to linear convection equations with non-
linear source terms by using a relaxation system and its interpretation as a discrete Boltzmann equation.
A splitting method is used to separate the convection and relaxation parts. Least squares upwinding is
used for discretizing the convection equations, thus developing a grid-free scheme which can operate
on any arbitrary distribution of points. The scheme is grid free in the sense that it works on any
arbitrary distribution of points and it does not require any topological information like elements, faces,
edges, etc. This method is tested on some standard test cases. To explore the power of the grid-free
scheme, solution-based adaptation of points is done and the results are presented, which demonstrate
the e�ciency of the new grid-free scheme. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: relaxation system; least squares upwinding; grid-free schemes; diagonal form; discrete
kinetic system; inviscid compressible �ows

1. INTRODUCTION

For solving inviscid compressible �ows numerically, upwind methods have gained popularity
in the last two decades. The upwind methods developed for solving Euler equations can be
classi�ed into three categories, namely �ux vector splitting schemes, Riemann solvers (exact
or approximate) and kinetic-theory-based schemes. Comprehensive reviews of the �rst two
approaches are available in References [1–4]. Reviews of upwind methods based on kinetic
theory are given by Deshpande [5], Godlewski and Raviart [6]. Solving a Riemann problem
across the interface of a �nite volume is the most popular of all these approaches. Even these

∗Correspondence to: S. Balasubramanyam, Fluent India Pvt. Ltd., Plot No. 34/1, Pune Infotech Park, M.I.D.C.,
Hinjewadi, Pune 411 057, India.

†E-mail: sasanapuri@yahoo.co.uk
‡Research Student.
§Assistant Professor.

Received 11 July 2003
Revised 24 January 2005

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 18 August 2005



160 S. BALASUBRAMANYAM AND S. V. RAGHURAMA RAO

methods have their own shortcomings (see Reference [7]) and the search for an ideal Euler
solver is still continuing.
Recently, Jin and Xin [8] have introduced a fourth category of upwind methods called

relaxation schemes. A relaxation system converts a non-linear convection equation into linear
convection equations with non-linear source terms. The numerical methods based on a relax-
ation system are termed as relaxation schemes. These schemes avoid complicated Riemann
solvers and �ux splitting methods. In the present work this research is continued further by
developing a new grid-free relaxation scheme (see References [9–14]).
Grid generation is one of the important tasks in computational �uid dynamics (CFD). Grid

generation around complex geometries is a di�cult and time-consuming task. To reduce the
e�orts required in grid generation, in the recent past there has been a search for grid-free
schemes. One important result in this search is the least squares kinetic upwind method,
developed by Ghosh and Deshpande [15, 16]. In the present work the ideas of a relaxation
approximation and least squares upwinding are combined to develop a new grid-free upwind
relaxation scheme for inviscid compressible �ows. Here, the term grid free (also referred as
meshless, mesh free and gridless) is used in the sense that the scheme works on any arbitrary
distribution of points. The solver does not need any topological information like elements,
faces, edges, etc. All that the solver needs is a distribution of points in the �ow domain
and on boundaries and a set of neighbours around each point. Such grid-free solvers can
also work easily on any combination of several grids (chimera grids), whether structured or
unstructured, where traditional �nite volume methods are known to encounter di�culties or
may even fail.

2. RELAXATION SYSTEM FOR HYPERBOLIC EQUATIONS

2.1. Relaxation system of Jin and Xin

Consider a scalar conservation equation in 1D,

@u
@t
+
@g(u)
@x

=0 (1)

with the initial condition given by

u(x; t=0)= u0(x) (2)

where g(u) is a non-linear function of u: The relaxation system of Jin and Xin [8] for
(1) is given by

@u
@t
+
@v
@x
=0

@v
@t
+ �2

@u
@x
=−1

�
[v− g(u)]

⎫⎪⎪⎬
⎪⎪⎭ relaxation system (3)

with the initial conditions given by

u(x; t=0)= u0(x); v(x; t=0)= g(u0(x)) (4)
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Here, v is a new variable, � is a positive constant and � is a small positive constant called
relaxation parameter. By re-arranging, the second equation of (3) can be written as

�
[
@v
@t
+ �2

@u
@x

]
= − [v− g(u)] (5)

In the limit of � → 0, (5) leads to

v= g(u) (6)

By substituting (6) in the �rst equation of the relaxation system (3), we get back the orig-
inal conservation law (1). Therefore, solving (3) with � → 0 is equivalent to solving (1).
The advantage in dealing with the relaxation system (3) instead of the original non-linear
conservation equation (1) is that the convection terms (the left-hand side) of (3) are linear.
The non-linear source term (the right-hand side) in (3) can be separated by using a splitting
method [8].
In the initial conditions (4), v(x; t=0)= g(u0(x)) leads to initial local equilibrium and

avoids the development of an initial layer [8]. In the next section, a Chapman–Enskog-type
expansion is used to obtain the condition under which the relaxation system (3) is a dissipative
approximation to the original conservation law (1).

2.2. Chapman–Enskog-type expansion for the relaxation system

A Chapman–Enskog-type expansion for the relaxation system will show the condition under
which the relaxation system is a dissipative approximation to the given conservation law.
Chapman–Enskog-type expansion (see References [11, 17] for derivation) for the relaxation
system (3) results in the following equation:

@u
@t
+
@g(u)
@x

= �
@
@x

[{
�2 −

(
@g(u)
@u

)2} @u
@x

]
+O(�2) (7)

The right-hand side of (7) contains a second derivative of u, and hence represents a vis-
cous (or dissipation) term. The coe�cient represents the coe�cient of viscosity. Therefore,
the relaxation system provides a vanishing viscosity model for the original conservation law
(1). For the relaxation system (3) to be a dissipative approximation for the conservation law
(1) (i.e. for the coe�cient of viscosity to be positive) the following condition has to be
satis�ed:

�2 −
(
@g(u)
@u

)2
¿ 0 or �2¿

(
@g(u)
@u

)2
(8)

or − �6
(
@g(u)
@u

)
6� (9)

The constant � in the relaxation system (3) is chosen such that (9) is satis�ed.
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2.3. Diagonal form of relaxation system

Consider the scalar conservation law (1) and the relaxation system (3). The relaxation
system (3) can be re-written in vector form as

@Q
@t
+ A

@Q
@x
=H (10)

where

Q=

[
u

v

]
; A=

[
0 1

�2 0

]
and H =

⎡
⎣ 0

−1
�
[v− g(u)]

⎤
⎦ (11)

Since system (10) is hyperbolic, matrix A can be diagonalized as

A=R�R−1 or �=R−1AR (12)

where R is the right eigenvector of A and � is the diagonal matrix with the diagonal elements
being the eigenvalues of A.

R=

[
1 1

−� �

]
; �=

[−� 0

0 �

]
and R−1 =

⎡
⎢⎢⎣
1
2

− 1
2�

1
2

1
2�

⎤
⎥⎥⎦ (13)

By introducing characteristic variables, the relaxation system (10) can be de-coupled as given
below. By de�ning the characteristic variables as

f =R−1Q (14)

we obtain the following diagonal system:

@f
@t
+�

@f
@x
=R−1H (15)

From (13) and (11), we obtain

f =

[
f1

f2

]
=R−1Q=

⎡
⎢⎢⎣
1
2
u− 1

2�
v

1
2
u+

1
2�
v

⎤
⎥⎥⎦ and R−1H =

⎡
⎢⎢⎣

1
2��

[v− g(u)]

− 1
2��

[v− g(u)]

⎤
⎥⎥⎦ (16)

Substituting (16) in (15), the following set of de-coupled equations are obtained:

@f1
@t

− �@f1
@x
=

1
2��

[v− g(u)]
@f2
@t
+ �

@f2
@x
=− 1

2��
[v− g(u)]

(17)

In the limit of � → 0 the de-coupled system (17) is equivalent to the conservation law (1).
The left-hand side of the two de-coupled hyperbolic equations are linear, with constant wave
speeds neatly split into positive and negative parts. Constructing an upwind scheme for the
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above system is much simpler compared to the task of developing an upwind scheme for
the conservation law (1), when g(u) is a non-linear function of u. From (16), the following
expressions can be obtained for u and v:

u=f1 + f2 and v= �(f2 − f1) (18)

Using the above expressions, the original variables of the relaxation system, u and v, can be
recovered.

2.4. Diagonal form as discrete kinetic system

The diagonal form of the relaxation system can be interpreted as a discrete kinetic system.
Using expressions (18) and de�ning new variables F1 and F2 as

F1 =
1
2
u− 1

2�
g(u) and F2 =

1
2
u+

1
2�
g(u) (19)

the de-coupled system (17) can be re-written as

@f1
@t

− �@f1
@x
=
1
�
[F1 − f1]

@f2
@t
+ �

@f2
@x
=
1
�
[F2 − f2]

(20)

or equivalently as

@f
@t
+�

@f
@x
=
1
�
[F− f] (21)

where

f =

[
f1

f2

]
and F=

[
F1

F2

]
(22)

and � is as de�ned in (13). Here, the initial conditions (4) can be re-written as

u(x; t=0)= u0(x) and f(t=0)=F(u0(x)) (23)

Equation (21) is similar to the classical Boltzmann equation with B–G–K collision model,
where � represents the relaxation time. The di�erence between the two is that Equation (21)
contains two discrete velocities (−�; �) whereas the molecular velocity in the classical Boltz-
mann equation is continuous. f1 and f2 represent the corresponding components of the dis-
tribution function. This interpretation was used by Natalini and Driollet [18, 19] to develop
numerical schemes using relaxation system and Equation (21) is called discrete Boltzmann
equation. The discrete Boltzmann equation in 1D is generalized to multi-dimensions by
Driollet and Natalini [19] as the relaxation system of Jin and Xin is not diagonalizable in
multi-dimensions and it is preferable to work with the diagonal form.
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2.5. Relaxation system for Euler equations in 1D

Consider the Euler equations in 1D,

@u
@t
+
@g(u)
@x

=0 (24)

with the initial condition

u(x; t=0)= u0(x) (25)

where

u=

⎡
⎢⎢⎣
�

�u

�E

⎤
⎥⎥⎦ ; g(u)=

⎡
⎢⎢⎣

�u

p+ �u2

pu+ �uE

⎤
⎥⎥⎦ and E=

p
�(�− 1) +

u2

2
(26)

2.5.1. Relaxation system of Jin and Xin. Introducing a new variable vector v, the relaxation
system of Jin and Xin [8] for (24) can be written as

@u
@t
+
@v
@x
=0

@v
@t
+D

@u
@x
=−1

�
[v − g(u)]

(27)

with the initial conditions given by

u(x; t=0)= u0(x); v(x; t=0)= g(u0(x)) (28)

Here, D is a constant diagonal matrix with positive elements, which is to be chosen in such
a way that approximation (27) is dissipative.

D=

⎡
⎢⎣
�21 0 0

0 �22 0

0 0 �23

⎤
⎥⎦ (29)

In the limit of � → 0, solving the relaxation system (27) is equivalent to solving the Euler
equations (24). The special initial condition on v (28) avoids the development of an initial
layer, as the initial state is in local equilibrium [8]. Doing Chapman–Enskog-type expansion,
based on the eigenvalues of the �ux Jacobian matrix of Euler equations, Jin and Xin [8]
proposed the following two choices:

(i) �2 = �21 = �
2
2 = �

2
3 =max[max|u− a|;max |u|;max |u+ a|] (30)

or
(ii) �21 = max |u− a|; �22 = max |u| and �23 = max |u+ a| (31)

Here, u is the �uid velocity and a is the acoustic speed. The above maxima are de�ned over
the whole domain. With the �rst choice, the diagonal matrix D can be written as

D= �2I (32)

where I is a unit matrix of order 3.
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2.5.2. Discrete kinetic system. Discrete kinetic system for the 1D Euler equations is similar
to the discrete kinetic system for the scalar conservation law given in Section 2.4, except for
the fact that the characteristic variables f1, f2 and the discrete distribution functions F1, F2
are vectors in this case. Discrete kinetic system for this case is given by

@f
@t
+�

@f
@x
=
1
�
[F− f] (33)

where

f =

[
f1

f2

]
=

⎡
⎢⎢⎣
1
2
u − 1

2�
v

1
2
u+

1
2�
v

⎤
⎥⎥⎦ ; F=

[
F1

F2

]
=

⎡
⎢⎢⎣
1
2
u − 1

2�
g(u)

1
2
u+

1
2�
g(u)

⎤
⎥⎥⎦ and �=

[−� 0

0 �

]
(34)

In 2D, the generalization of 1D discrete kinetic system (33) is used as the relaxation system
of Jin and Xin is not diagonalizable in multi-dimensions [19].

2.5.3. Discreet Boltzmann equation in comparison with classical Boltzmann equation. The
discrete Boltzmann equation (33) is similar to the classical Boltzmann equation of the kinetic
theory of gases:

@f
@t
+ v

@f
@x
=
1
�
(F − f) (35)

where f is now the molecular velocity distribution function, v is the molecular velocity and
the right-hand side is the B–G–K collision model with � as the relaxation time during which
the distribution function f relaxes to the local Maxwellian distribution F . In the kinetic
theory, the expression for the local Maxwellian is given by

F =
�
I0

√
�√
�
e−�(v−u)

2−(I=I0) (36)

where �=1=2RT . Here, I is the internal energy variable for non-translational degrees of
freedom and I0 is the corresponding average internal energy. The expression for the local
Maxwellian in the discrete kinetic system is given by (34), which can be re-written as

F1 =
1
2

[
u − 1

�
g(u)

]
; F2 =

1
2

[
u+

1
�
g(u)

]
where �2I =D (37)

We can see that the expression for the local Maxwellian for the discrete kinetic system
is much simpler as it is expressed entirely in simple algebraic expressions of macroscopic
variables, unlike the classical Maxwellian which contains a molecular velocity variable in an
exponential term. The moments of the continuous Maxwellian or the continuous molecular
velocity distribution function give the conserved variables as∫ ∞

0
dI

∫ ∞

−∞
dv F =

∫ ∞

0
dI

∫ ∞

−∞
dvf= u (38)

In the discrete kinetic system, this relation is simply given as

u=PF=Pf (39)
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where P is a real constant coe�cient matrix. In the 1D case P is given by

P=[1 1] (40)

With this de�nition, we obtain

u=
N∑
i=1
Fi=

N∑
i=1
fi (41)

where N is the number of discrete velocities (N =2 for the 1D case). The �ux vector is
recovered from the molecular velocity distribution function by multiplying with the molecular
velocity and then taking moments as

g(u)=
∫ ∞

0
dI

∫ ∞

−∞
dv vF (42)

In the discrete kinetic system, we �rst recover the variable v as

v=P�f (43)

and then, in the limit of � → 0, we recover the �ux vector as v= g(u) (see (6)). Thus, the
discrete kinetic system shares the spirit of the classical Boltzmann equation of kinetic theory
and is much simpler in its expressions.

2.6. Relaxation system for Euler equations in 2D

Consider Euler equations in 2D

@u
@t
+
@g1(u)
@x

+
@g2(u)
@y

=0 (44)

where

u=

⎡
⎢⎢⎢⎢⎢⎣

�

�u1

�u2

�E

⎤
⎥⎥⎥⎥⎥⎦ ; g1(u)=

⎡
⎢⎢⎢⎢⎢⎣

�u1

p+ �u21

�u1u2

(p+ �E)u1

⎤
⎥⎥⎥⎥⎥⎦ ; g2(u)=

⎡
⎢⎢⎢⎢⎢⎣

�u2

�u2u1

p+ �u22

(p+ �E)u2

⎤
⎥⎥⎥⎥⎥⎦ and

E =
p

�(�− 1) +
u21 + u

2
2

2

(45)

As mentioned earlier, since the relaxation system of Jin and Xin [8] for the above Euler
equations is not diagonalizable, the discrete kinetic system, which is already in diagonal
form, is generalized to 2D [19]. This approach can be easily extended to 3D also.

2.6.1. Discrete kinetic system. The multi-dimensional discrete kinetic system is given by

@f
@t
+

d∑
k=1
�k
@f
@xk

=
1
�
[F− f] (46)
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where d is the number of translational degrees of freedom, �k are real diagonal N×N matrices
and N is the number of discrete velocities (N¿d + 1). For the 2D case, N is taken as
N =d+ 1=3 [19]. Therefore, the discrete kinetic system for 2D case is given by

@f
@t
+�1

@f
@x
+�2

@f
@y
=
1
�
[F− f] (47)

with

f =

⎡
⎢⎢⎣
f1

f2

f3

⎤
⎥⎥⎦ ; F=

⎡
⎢⎢⎣
F1

F2

F3

⎤
⎥⎥⎦

�1 =

⎡
⎢⎢⎣
�11 0 0

0 �12 0

0 0 �13

⎤
⎥⎥⎦ ; �2 =

⎡
⎢⎢⎣
�21 0 0

0 �22 0

0 0 �23

⎤
⎥⎥⎦

(48)

The conservative variable u and the new variables v1, v2 can be recovered as

u=Pf ; v1 =P�1f and v2 =P�2f (49)

where matrix P is de�ned by

P=[1 1 1] (50)

The ‘moments’ of the local Maxwellian F are given by

PF= u; P�1F= g1(u) and P�2F= g2(u) (51)

The local Maxwellians are de�ned as (see Reference [19])

Fd+1 =
1

d+ 1

[
u+

1
�

d∑
k=1
gk(u)

]
and

Fi =−1
�
gi(u) + Fd+1 for i=1; 2; : : : ; d

(52)

Therefore, for the 2D case, the expressions for the discrete Maxwellians are given by

F1 =
u
3

− 2
3�
g1(u) +

1
3�
g2(u)

F2 =
u
3
+
1
3�
g1(u)− 2

3�
g2(u)

F3 =
u
3
+
1
3�
g1(u) +

1
3�
g2(u)

(53)
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Using expressions (49) with the above de�nitions of local Maxwellians, the expressions for
elements of the matrices P, �1 and �2 can be obtained as

P=[1 1 1]; �1 =

⎡
⎢⎢⎣

−� 0 0

0 0 0

0 0 �

⎤
⎥⎥⎦ and �2 =

⎡
⎢⎢⎣
0 0 0

0 −� 0

0 0 �

⎤
⎥⎥⎦ (54)

Substituting (54) in (47) the three de-coupled equations of the discrete kinetic system can be
written as

@f1
@t

− �@f1
@x
=
1
�
[F1 − f1]

@f2
@t

− �@f2
@y
=
1
�
[F2 − f2]

@f3
@t
+ �

@f3
@x
+ �

@f3
@y
=
1
�
[F3 − f3]

(55)

From the above three equations the splitting of information propagation along each character-
istic direction can be seen very clearly. For the characteristic f1 the wave speed −� indicates
that the information comes from the right side of the Y -axis. For the characteristic f2 the
wave speed −� indicates that the information comes from upper side of the X -axis. For the
characteristic f3 the wave speeds +� and +� indicate that the information comes from lower
side of the X -axis and left side of the Y -axis.

2.6.2. Chapman–Enskog-type expansion. Chapman–Enskog-type expansion (see References
[11, 19] for derivation) for the relaxation system in 2D gives the following condition:

�¿(−A1 − A2; 2A1 − A2;−A1 + 2A2) (56)

where

A1 =
@g1(u)
@u

and A2 =
@g2(u)
@u

(57)

Let us de�ne

K1 = − A1 − A2; K2 = 2A1 − A2 and K3 = − A1 + 2A2 (58)

To �x �, eigenvalues for these three matrices are needed. The eigenvalues for the matrices
K1; K2 and K3 derived with a symbolic manipulator are given as

K1 :−u− v;−u− v;−u− v±
√
(1− �)(u2 + v2 − 2H)

K2 : 2u− v; 2u− v; 2u− v± 1
2

√
10(1− �)(u2 + v2 − 2H)

K3 :−u+ 2v;−u+ 2v;−u+ 2v± 1
2

√
10(1− �)(u2 + v2 − 2H)

(59)

where

H =
�p

�(�− 1) +
u2 + v2

2
(60)
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In this work, the spectral radius of each of these matrices in (59) is found and the maximum
of the three is used as �. Here, the spectral radius means the maximum eigenvalue of the
given matrix.

3. RELAXATION SCHEMES

3.1. Relaxation schemes of Jin and Xin

In this section the relaxation schemes of Jin and Xin are discussed brie�y. Full details of
these schemes can be obtained from Jin and Xin [8] and the references there in. Jin and Xin
classify their schemes into two categories, namely, relaxing schemes and relaxed schemes.
Relaxing schemes depend on � and the arti�cial variable v. The zero relaxation limit of the
relaxing schemes are called relaxed schemes. The relaxed schemes are stable discretizations
of the original conservation law, and thus are independent of � and the arti�cial variable v. Jin
and Xin do upwinding based on the characteristic variables. To achieve second-order accuracy
they use van Leer’s MUSCL scheme. They use a second-order TVD Runge–Kutta splitting
scheme for time discretization, which was introduced by Jin [20]. In this section the relaxation
schemes are given for 1D relaxation system. For multi-dimensional relaxation systems, which
are just the natural dimension-by-dimension extension of 1D case, the reader is referred to
Reference [8].

3.2. Diagonal relaxation schemes based on discrete kinetic system

In the previous section the Relaxation schemes of Jin and Xin are discussed brie�y, in which
the upwinding is done based on the characteristic variables. Driollet and Natalini [19] have
introduced discrete kinetic schemes, where they start with a set of de-coupled equations, in
which the dependent variables are just the characteristic variables. This system of equations is
discussed in Section 2.6.1. The basic advantage with this approach is that upwinding becomes
simple and this approach can be easily extended to multi-dimensions.

3.3. Operator splitting

Operator-splitting methods are commonly used in many applications. The basic advantage
of this approach is that one can use a speci�c method for each physical phenomenon (e.g.
convection, di�usion, relaxation). Operator-splitting approach is also used for splitting a multi-
dimensional problem into a number of one-dimensional problems. For the analysis of operator
splitting and the related problems the reader is referred to Reference [21]. Let us consider
the discrete kinetic system (21).

@f
@t
+�

@f
@x
=
1
�
[F− f] (61)

We can re-write the above equation as

@f
@t
= S(t)(f) + C(t)(f) (62)
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where S(t) is the relaxation operator, with S denoting the source part, and C(t) is the convection
operator, given by

S(t) =
1
�
[F− f] and C(t) = − �@f

@x
(63)

Using the operator splitting, the procedure for solving the discrete kinetic system can be split
into two steps as

Step A :
@f
@t
= S(t) (relaxation step) (64)

Step B :
@f
@t
=C(t) (convection step) (65)

Now, the obvious question that follows is whether we can get a second-order accurate
scheme if we use a second-order accurate spatial discretization and a second-order accurate
time discretization in both the steps. In general, the answer is no. This problem is due to the
splitting error, which is in general O(�t) for the type of splitting used above, and due to this
the above splitting method will be only �rst-order accurate in time, no matter how accurate
the approximations are in the two steps. To achieve second-order accuracy, Strang [22] has
introduced a method (called as Strang’s splitting method) which is discussed brie�y in the
next section.

3.4. Strang’s splitting

A slight modi�cation of the splitting idea discussed in the previous section will yield second-
order accuracy (when each sub-problem is solved with at least second-order accuracy).
The idea is to solve the �rst sub-problem over only a half time step of length �t=2. Then use
the result as initial data for a full time step on the second sub-problem, and use the result
as the initial data and take another half time step on the �rst sub-problem. This approach is
called Strang’s splitting.
The use of Strang’s splitting is to get formal second-order accuracy during a time step �t,

and applying this method to the discrete kinetic system (61), we get

@f
@t
= S(�t=2) (66)

@f
@t
=C(�t) (67)

@f
@t
= S(�t=2) (68)

For time discretization, a two-stage Runge–Kutta method can be used. With this we should
get a second-order accurate scheme. But in the case of a relaxation system there is a special
problem called sti�ness which is due to the very small time scale (relaxation time) involved
in the relaxation step, compared to the physical time scales (and space scales) involved in
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the convection step. In the limit of � → 0, even this Strang splitting reduces to formal �rst-
order accuracy (see Reference [20]). To overcome this problem Jin [20] suggests a modi�ed
Strang’s splitting method to achieve formal second-order accuracy.

3.5. Problems with second-order accuracy and Jin’s modi�ed Strang’s splitting

As mentioned earlier, in the sti� limit (i.e. as � → 0), the Strang’s splitting method re-
duces to formal �rst-order accuracy, despite using second-order accurate discretizations in the
convection and relaxation steps. Jin [20] proved this fact mathematically and developed a new
modi�ed Strang’s splitting method, which gives formal second-order accuracy even in the sti�
limit. For the discrete kinetic system (61), Jin’s method can be given as

f? = fn + a
�t
�
[F? − f?] (69)

f (1) = f? −�t�conv (70)

f?? = f (1) + b
�t
�
[F?? − f??] + c�t

�
[F? − f?] (71)

f (2) = f?? −�t�conv (72)

fn+1 = 1
2(f

n + f (2)) (73)

where �conv is the discrete convection operator . For full second-order accuracy, Jin [20] has
shown that the constants a; b; c used in the above splitting method are given by

a= − 1; b=1; c=2 (74)

4. LEAST SQUARES UPWINDING

4.1. Introduction

Discretization of the domain is a necessary �rst step in solving a partial di�erential equa-
tion numerically. This is called grid generation. Grid generation for complex geometries is
a di�cult and time-consuming task. To minimize the e�orts required for grid generation, in
the recent past there has been a search for grid-free methods. In this search, a method called
least squares kinetic upwind method is developed by Ghosh and Deshpande [15, 16]. In this
work, the idea of least squares upwinding is used to develop a grid-free relaxation scheme.
Here, the scheme is grid free in the sense that it works on points obtained by any type of
grid (structured or unstructured), a combination of grids or just on any arbitrary distribution
of points.

4.2. Least squares upwinding in 1D

4.2.1. First-order accurate least squares upwinding. Consider a 1D linear convection equation

@f
@t
+ �

@f
@x
=0 (75)
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P 1 2 3456 X

Figure 1. Arbitrary distribution of points in 1D.

To discretize the above equation, consider the computational domain consisting of an arbi-
trarily distributed set of points as shown in Figure 1. Let i be any neighbour point around
the point of consideration, P. Taylor series expansion around P gives

fi=fP + (xi − xP)
(
@f
@x

)
P
+O[(xi − xP)2] (76)

Let the error of this approximation be denoted by e. Therefore,

e=fi − fP − (xi − xP)
(
@f
@x

)
P

(77)

Let E be the sum of squares of the errors at all neighbouring points, i.

E=
n∑
i=1
e2 (78)

where n is the total number of neighbouring points in the stencil. Let us now introduce some
notation for simplicity as

�fi=fi − fP; �xi= xi − xP; fx=
(
@f
@x

)
P

(79)

Using this notation, expressions (77) and (78) can be written as

e=�fi −�xifx (80)

and

E=
n∑
i=1
(�fi −�xifx)2 (81)

Let us now minimize the sum of squares of errors with respect to the derivative, fx.

@E
@(fx)

=0 or
@

@(fx)

[
n∑
i=1
(�fi −�xifx)2

]
=0 (82)

from which we obtain

fx=
(
@f
@x

)
P
=

∑n
i=1 �fi�xi∑n
i=1 �x

2
i

(83)

Expression (83) gives an approximation for the space derivative for an arbitrary distribution
of n points. But, this approximation does not give preference to any direction, and is not an
upwind approximation. Therefore, this approximation will lead to an unstable scheme for the
given hyperbolic equation, if coupled with forward time discretization of the time derivative,
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as it is like central di�erencing. To introduce upwinding, let us introduce weighted least
squares method.

E=
n∑
i=1
wie2 (84)

If we now minimize E, we get

fx=
(
@f
@x

)
P
=

∑n
i=1 wi�fi�xi∑n
i=1 wi�x

2
i

(85)

Using approximation (85), we can discretize a hyperbolic equation like (75), using wave
speed splitting as in C–I–R scheme, as

fn+1P − fnP
�t

+
�+ |�|
2

∑n
i=1 wi�fi�xi∑n
i=1 wi�x

2
i
+
�− |�|
2

∑n
i=1 wi�fi�xi∑n
i=1 wi�x

2
i
=0 (86)

Now, we have to choose the weights wi at each point i in such a way that the approximation
is upwinding. If we substitute wi=1 everywhere, we get back the earlier formula, which is
like central di�erencing. If we take wi=1 for upwind points and wi=0 otherwise, we can
get an upwind approximation. We can do this by prescribing the weights as

wi=1 if �¿ 0 and �xi¡0 (i:e: i is on the left side of P)

wi=0 if �¿ 0 and �xi ¿ 0 (i:e: i is on the right side of P)

wi=1 if �¡ 0 and �xi ¿ 0

wi=0 if �¡ 0 and �xi ¡ 0

(87)

This procedure ensures that only the points upwind of P contribute to the derivative
approximation. This procedure is equivalent to taking the least squares approximation for
the derivative without the weights (83), but with only the points left to the point P if �¿ 0
and only the points right to the point P if �¡ 0.

4.2.2. Second-order accurate least squares upwinding. To achieve second-order accuracy on
an arbitrary distribution of points, the two-step procedure introduced by Ghosh and Deshpande
[16] is used. This procedure is explained below. Consider the Taylor series expansion as

fi=fP +
(
@f
@x

)
P
�xi +

(
@2f
@x2

)
P

(�xi)2

2
+O(�x3i ) (88)

or

�fi=
(
@f
@x

)
P
�xi +

(
@2f
@x2

)
P

(�xi)2

2
+O(�x3i ) (89)

Di�erentiating the above equation with respect to x, the following equation is obtained:

@
@x
(�fi)=�xi

(
@2f
@x2

)
P
+O(�x2i ) (90)
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The above expression can be used to eliminate the (@2f=@x2)P term in the Taylor expansion,
and the least squares minimization then gives a second-order accurate expression for the
derivative on an arbitrary distribution of points. For this purpose, let us de�ne

�f̃i=�fi −
�xi
2
@
@x
(�fi) (91)

Substituting (89) and (90) in (91), we get

�f̃i =�xi

(
@f
@x

)
P
+
�x2i
2

(
@2f
@x2

)
P
+O(�x3i )

−�xi
2

[
�xi

(
@2f
@x2

)
P
+O(�x2i )

]
(92)

The second-order terms get cancelled and we get

�f̃i=�xi

(
@f
@x

)
P
+O(�x3i ) (93)

Note that the truncation part in Equation (93) is of O(�x3i ). Now, rede�ning the error as

e=�f̃i −�xi
(
@f
@x

)
P

(94)

the sum of the squares of errors as

E=
n∑
i=1
(�f̃i −�xifx)2 (95)

and minimizing E w.r.t. fx, the approximation for the derivative can be obtained as(
@f
@x

)
P
=

∑n
i=1 �xi�f̃i∑n
i=1 �x

2
i

(96)

where

�f̃i=�fi −
�xi
2

[(
@f
@x

)
i
−

(
@f
@x

)
P

]
(97)

Since the error e is de�ned with a truncation term O[�x3i ], the above expression is second-
order accurate. The derivatives (fx)P and (fx)i can be evaluated using the expression for
the �rst-order accurate derivative (83). The above two-step procedure yields a second-order
accurate derivative on an arbitrary distribution of points, without increasing the points in the
stencil. Upwinding can be done in the same way as explained in the previous section. To
suppress the spurious wiggles in the results obtained with the second-order accurate scheme,
min–max limiters (see References [11, 16] for details) are used.
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Figure 2. Arbitrary distribution of points in 2D.

4.3. Least squares upwinding in 2D

4.3.1. First-order accurate least squares upwinding. Consider an arbitrary distribution of
points as shown in Figure 2. Taylor series expansion gives, for a set of points i=1; 2; : : : ; n
around P,

fi=fP + (xi − xP)
(
@f
@x

)
P
+ (yi − yP)

(
@f
@y

)
P
+O[(xi − xP)2; (yi − yP)2] (98)

The error for this 2D case is de�ned by

e=�fi −�xifx −�yify (99)

The sum of squares of the error is given by

E=
n∑
i=1
(�fi −�xifx −�yify)2 (100)

Minimizing E with respect to both fx and fy, the expressions for derivatives can be obtained
as

fx =
∑
�y2i

∑
�xi�fi −

∑
�xi�yi

∑
�yi�fi∑

�x2i
∑
�y2i − (∑�xi�yi)2 (101)

fy =
∑
�x2i

∑
�yi�fi −

∑
�xi�yi

∑
�xi�fi∑

�x2i
∑
�y2i − (∑�xi�yi)2 (102)

In the above two expressions
∑
stands for

∑n
i= 1. The derivations of (101) and (102) are

given in Reference [11]. The above two expressions ((101) and (102)) give approximations
for space derivatives for an arbitrary distributions of n points, with respect to x and y,
respectively. But, these approximations do not give preference to any direction, and they are
not upwind approximations. It can be shown that these expressions give central di�erence like
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approximations for the derivatives, hence they will lead to an unstable scheme. To introduce
upwinding let us �rst consider linear convection equation in 2D as

@f
@t
+ �1

@f
@x
+ �2

@f
@y
=0 (103)

Here, f is a function that propagates with a constant wave speed whose components in x
and y directions are �1 and �2, respectively. To develop an upwind scheme for (103), let us
re-write (103) with C–I–R splitting as

@f
@t
+
�1 + |�1|
2

@f
@x
+
�1 − |�1|
2

@f
@x
+
�2 + |�2|
2

@f
@y
+
�2 − |�2|
2

@f
@y
=0 (104)

Following the same procedure introduced in Section 4.2.1, weighted least squares approxima-
tions for the derivatives can be obtained as

fx =
∑
wi�y2i

∑
wi�xi�fi −

∑
wi�xi�yi

∑
wi�yi�fi∑

wi�x2i
∑
wi�y2i − (∑wi�xi�yi)2 (105)

fy =
∑
wi�x2i

∑
wi�yi�fi −

∑
wi�xi�yi

∑
wi�xi�fi∑

wi�x2i
∑
wi�y2i − (∑wi�xi�yi)2 (106)

Here,
∑
stands for

∑n
i=1. The weights wi are chosen in such a way that the above expressions

for the derivatives give upwind approximations. In essence, only upwind points are considered
while evaluating the derivatives. To put it in another way wi is taken as 1 if i is an upwind
point and wi is taken as 0 if i is not an upwind point. This criterion for (104) leads to the
following set of weights:

wi=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for �xi ¡ 0 and �1¿ 0

1 for �xi ¿ 0 and �1¡ 0

1 for �yi ¡ 0 and �2¿ 0

1 for �yi ¿ 0 and �2¡ 0

0 otherwise

(107)

Another way of explaining the least squares upwinding is by splitting stencil based on the
location of each neighbour. Here, two types of splitting the stencil are explained, the �rst one
is x–y splitting and the other is quadrant splitting [16]. Now, let us consider x–y splitting. In
this method the full set of neighbours for the point P can be divided into 4 subsets as points
to the left side of y-axis, points to the right side of y-axis, point on the upper side of x-axis
and points on the lower side of the x-axis.
Let N (P) be the set of all neighbouring nodes to point P in the stencil, de�ned as

N (P)= {i; 16i6n} (108)
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Figure 3. Split stencils for x–y splitting.

Now, dividing the set N (P) into 4 subsets, based on the location as explained above, we get

N1(P) = {i; i∈N (P) and �xi ¡ 0}
N2(P) = {i; i∈N (P) and �xi ¿ 0}
N3(P) = {i; i∈N (P) and �yi ¡ 0}
N4(P) = {i; i∈N (P) and �yi ¿ 0}

(109)

The above four sub-stencils are shown pictorially in Figure 3. Using (105), (106) and (109),
(104) can be written as

@f
@t
+
�1 + |�1|
2

(∑
�y2i

∑
�xi�fi −

∑
�xi�yi

∑
�yi�fi∑

�x2i
∑
�y2i − (∑�xi�yi)2

)
N1(P)

+
�1 − |�1|
2

(∑
�y2i

∑
�xi�fi −

∑
�xi�yi

∑
�yi�fi∑

�x2i
∑
�y2i − (∑�xi�yi)2

)
N2(P)

+
�2 + |�2|
2

(∑
�x2i

∑
�yi�fi −

∑
�xi�yi

∑
�xi�fi∑

�x2i
∑
�y2i − (∑�xi�yi)2

)
N3(P)

+
�2 − |�2|
2

(∑
�x2i

∑
�yi�fi −

∑
�xi�yi

∑
�xi�fi∑

�x2i
∑
�y2i − (∑�xi�yi)2

)
N4(P)

= 0 (110)

The subscripts in (110) indicate that the derivative is calculated using those particular stencils.
Using the weights as shown in (107) is equivalent to using the x–y split stencils as in (110).
Another way of splitting called quadrant splitting is also possible, in which upwinding is
done by considering the informations coming from each quadrant separately. For details the
reader is referred to References [11, 16]. Second-order accuracy in 2D is achieved in the
same way as is described for the 1D case, by a two-step procedure on a compact stencil.
Min–max limiters (see References [11, 16]) are used to suppress the spurious oscillations in
the second-order accurate solution.
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5. GRID-FREE RELAXATION SCHEME

In Section 2, the discrete kinetic system as a relaxation system is introduced for hyperbolic
equations. In Section 4 the least squares upwinding is presented. These two basic ideas are
used as building blocks for the new grid-free relaxation scheme. The discrete kinetic system
approximates scalar or vector conservation laws by a set of linear advection equations with
relaxation terms as source terms. The discrete kinetic system for a given conservation law
is solved by splitting method. For a �rst-order accurate grid-free relaxation scheme simple
operator splitting is used along with �rst-order accurate least squares upwinding. To achieve
second-order accuracy Jin’s modi�ed Strang splitting method, which is discussed in Section 2,
is used along with second-order accurate least squares upwinding. In this section �rst-order
accurate and second-order accurate grid-free relaxation schemes are presented based on discrete
kinetic approximation, in one and two space dimensions. A new solid-wall boundary condition
is also presented in this section.

5.1. First-order accurate grid-free relaxation scheme in 1D

Consider discrete kinetic system in 1D:

@f
@t
+�

@f
@x
=
1
�
[F− f] (111)

The above system, in its form, is same for a scalar conservation law or for vector conservation
laws, di�ering only in the de�nitions of f and F. The details are presented in Section 2.
Here, the numerical scheme is given in a general form such that it is applicable for a scalar
conservation law or for vector conservation laws, with suitable de�nitions for f and F. As
mentioned in Section 3.3, using simple operator splitting, (111) can be written as

Step A :
@f
@t
= S(t) (relaxation step) (112)

Step B :
@f
@t
=C(t) (convection step) (113)

After discretization, the relaxation step can be written as

f∗ − fn
�t

=
1
�
[F∗ − f∗] (114)

Since the local Maxwellian F is a function of the conserved variables, at �rst glance, it
seems inevitable to use a non-linear algebraic solver. However, using the moment relations
u=Pf =PF, the above equation yields u∗= un. Thus, during the relaxation step, the conserved
quantities are unchanged, and therefore, we have, F∗=Fn (see Reference [23]). Hence, the
above equation can be solved in an explicit way, without non-linear algebraic solvers. Now,
(114) can be re-written as

f∗ − fn
�t

=
1
�
[Fn − f∗] (115)
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After some re-arrangement, the update formula is given by

f∗=
1(

1 +
�t
�

) [
fn +

(
�t
�

)
Fn

]
(116)

After discretization the convection step can be given by

fn+1 − f∗
�t

+�
@f∗

@x
=0 (117)

or

fn+1 = f∗ +�t�
@f∗

@x
(118)

where �(@f∗=@x) is calculated by using least squares upwinding, as described in Section 4.2.1.
Hence, Equations (116) and (118) together give the �rst-order accurate update formula for
the grid-free relaxation scheme in 1D.

5.2. Second-order accurate grid-free relaxation scheme in 1D

As mentioned in Section 3.5, even the Strang’s splitting reduces to formal �rst-order accu-
racy in the sti� limit, so to achieve formal second-order accuracy the Jin’s modi�ed TVD
Runge–Kutta method is used. For the discrete kinetic system (111), the second-order grid-free
relaxation scheme is given by (69) to (73) where �conv is the discrete convection operator. In
the present case second-order accurate two-step least squares upwind approximation is used
for this convection operator (presented in Section 4.2.2). Using the fact that the conserved
quantities are unchanged during the collision step, F∗ is calculated as

F∗=Fn (119)

and F∗∗ is calculated after the second step, i.e. after calculating f (1). In 2D, a similar procedure
is followed, using the 2D discrete Boltzmann equation, the simple splitting or the Strang’s
splitting method along with least squares upwinding presented in Section 4.3.

5.3. Stability analysis for grid-free relaxation scheme

In the grid-free relaxation scheme the discrete kinetic system or the diagonal form of relaxation
system is solved by splitting method. In the splitting method, the relaxation step is solved
by an implicit method, whereas the convection step (consisting of just a linear advection
equation) is solved by an explicit method. So, it is su�cient to choose the convection step,
i.e. a linear advection equation, for stability analysis, since the time step is restricted by the
convection step alone. The following stability analysis is based on Reference [17]. Consider
a linear advection equation in 1D, given by

@f
@t
+ �

@f
@x
=0 (120)
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P45 1 2 36 X

Figure 4. Arbitrary distribution of points in 1D, i=1; 2; 3; : : : ; N .

where � is a constant wave speed. Consider the arbitrary distribution of points shown in
Figure 4. Now, let us replace the space derivative in (120) by the least squares derivative to
obtain

df
dt

∣∣∣∣
P
= − �

∑N
i=1 wi�xi�fi∑N
i=1 wi�x

2
i

(121)

where �xi= xi − xP and �fi=fi − fP. The weights wi are chosen in such a way that the
upwinding property is satis�ed (as explained in Section 4). Let us de�ne

ai= − �wi�xi∑N
i=1 �x

2
i

(122)

ai¿0 because wi�xi ¡ 0 for �¿0 and wi�xi ¿ 0 for �¡0 from (87) (123)

Now, Equation (121) can be re-written as

df
dt

∣∣∣∣
P
=

N∑
i=1
ai(fi − fP) (124)

Since the coe�cients ai are positive, the local maximum cannot increase and the local mini-
mum cannot decrease, i.e. the scheme is local extremum diminishing (LED) [24]. Using the
explicit Euler time stepping (124) can be written as

fn+1P =fnP +�t
N∑
i=1
ai(fni − fnP) (125)

or

fn+1P =
(
1−�t

N∑
i=1
ai

)
fnP +�t

N∑
i=1
aifni (126)

or

fn+1P =
N∑

i=P; i=1
�ifni (127)

where

�i =1−�t
N∑
i=1
ai for i=P

�i =�t
N∑
i=1
ai for i �= P

(128)
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The LED condition demands that the following criterion is satis�ed:

min
i
fni 6f

n+1
i 6max

i
fni and; therefore; ‖fn+1‖L∞6‖fn‖L∞ (129)

We, therefore, obtain

�i¿0 and
N∑

i=P; i=1
�i=1 (130)

The second condition on � is the consistency condition, for a constant to be a solution of
(127). To satisfy (130) the following condition on �t can be obtained:

because ai¿ 0 06�i61 for i=P

�t6
1∑N
i=1 ai

for i �= P (131)

The above CFL-like condition gives the time step restriction for the scheme to be stable, for
an arbitrary distribution of points.

5.4. A note on �ux conservation for the grid-free relaxation scheme

It is well-known that �ux conservation is important to capture the location of discontinuities
like shocks and contacts accurately, in the framework of �nite volume methods. Shocks and
contact discontinuities are common features in compressible �ows and hence the issue of �ux
conservation becomes important. The grid-free (or meshless) methods do not belong to the
framework of �nite volume methods and the issue of �ux conservation is not studied in detail
yet for these newly developed schemes. One major di�culty in studying the issue of �ux
conservation for grid-free schemes is that the neighbourhood connectivity of a point consists
of overlapping sets of quadrilaterals, triangles (in 2D), hexahedrals or tetrahedrals (in 3D),
which is quite unlike the situation in the case of �nite volume methods. Deshpande et al.
[25] have made preliminary studies on the issue of �ux conservation for the least-squares-
based kinetic schemes. A similar analysis is applicable for the present scheme. The numerical
results shown in the next section for scalar and vector conservation equations, compared
with exact solutions and established numerical solutions, provide strong evidence that the �ux
conservation is satis�ed.

5.5. A new solid-wall boundary condition

The wall boundary condition used in the present work is based on the simple physical principle
that the component of velocity normal to the wall should be zero. The basic idea of the new
solid-wall boundary condition is explained in this section with the aid of Figure 5.
Let P be the point at which the wall boundary condition is to be applied. Let � be the

angle made by the tangent with x-axis, in the counter-clockwise direction. For the boundary
condition to be imposed at the point P, the state variables (p, �, u and v) are required.
These are extrapolated from inside the domain, using the Taylor series expansion and the
least squares expressions for evaluating the derivatives in it. The least squares expressions
are used without any upwind weights. Let u1 and v1 be the components of the velocity along
x and y co-ordinates, respectively, which are obtained by �rst-order accurate least squares
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Figure 5. Solid-wall boundary condition.

extrapolation as explained above. From u1 and v1 the tangential and normal components of
the velocity ut and un are calculated as (refer to Figure 5(a))

ut = u cos �+ v sin �

un =−u sin �+ v cos �
(132)

Now, the wall boundary condition is enforced by killing the normal component of the velocity
i.e. forcing un to zero. Then, the velocities are transformed back into the x and y coordinates
as (refer to Figure 5(b)). The inverse transformation is given by

u= ut cos �− un sin �
v= ut sin �+ un cos �

(133)

Enforcing the normal velocity un to be zero, we obtain

u= ut cos �

v= ut sin �
(134)

6. RESULTS AND DISCUSSION

The new grid-free relaxation scheme is used to solve some standard test problems for inviscid
Burgers’ equation and Euler equations in 1D and 2D. The test problems in 1D are solved
both on uniform distribution of points and arbitrary distribution of points, where the arbitrary
distribution of points are obtained by a random number generator. In case of 2D the test
problems are solved on uniform distribution of points and also on points obtained from an
unstructured mesh generator called Delaundo [26]. The test cases for the Burgers’ equation
are taken from References [4, 27]. For the test cases in 2D for Euler equations, the points
in the �ow domain are adapted based on the solution, to explore the power of the grid-free
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method. For adaptation bi-dimensional anisotropic mesh generation and adaptation software
(BAMG) [28] is used. Results for the adapted cases are also presented in this section.
When � goes to zero the relaxation system 3, reduces to the original hyperbolic equations.

But in the numerical study � is not actually zero and a �nite value has to be assumed. Hence,
the e�ect of � on the solution was studied for values ranging from 10−4 to 10−45. It is found
that there is no change in the solution when � is in the range of 10−8 to 10−45. Hence, for
all the test cases discussed in this section the numerical value of � is taken as 10−8. This is
consistent with the experiments done by Jin and Xin [8] on the numerical value of � in the
framework of �nite volume methods.

6.1. Inviscid Burgers’ equation in 1D

Test case 1: In one dimension, the inviscid Burgers’ equation is

@u
@t
+
@
@x

(
u2

2

)
=0 (135)

The initial conditions for this test case are given by

u=

{
1 for |x|¡ 1

3

−1 for 1
3¡|x|61

Exact solution:

uex(x; t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 for −∞ ¡x¡b1

−1 + 2 x − b1
b2 − b1 for b1 ¡x¡b2

1 for b1 ¡x¡bshock
−1 for bshock¡x¡∞

where

b1 = − 1
3 − t; b2 = − 1

3 + t; bshock = 1
3

These conditions for Burgers’ equation describe a square wave. Periodic boundary conditions
are applied at the boundaries. The problem consists of a jump from zero to one at x= − 1=3
which creates an expansion fan while the jump from one to zero at x=1=3 creates a shock.
Exact solution and the numerical solutions are obtained at u(x; 0:3), with 200 points in the
domain. The �rst- and second-order accurate numerical solutions are obtained both on uniform
distribution of points and arbitrary distribution of points, and are shown in Figures 6 and 7.
We can see that the scheme has no problem at the sonic point (where the value of u jumps
from negative to positive) and no unphysical expansion shocks are present.

6.2. Inviscid Burgers’ equation in 2D

Test case 2: The inviscid Burgers’ equation considered here is given by

@u
@t
+
@
@x

(
u2

2

)
+
@u
@y
=0
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Figure 6. Solutions for inviscid Burgers’ equation on uniform distribution of points, for test case 1:
(a) �rst-order accurate solution; and (b) second-order accurate solution.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

u

x

Exact
Numerical

Exact
Numerical

(a)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

u

x(b)

Figure 7. Solutions for inviscid Burgers’ equation on arbitrary distribution of points, for test case 1:
(a) �rst-order accurate solution; and (b) second-order accurate solution.

Boundary conditions for the above non linear problem over a square [0; 1]× [0; 1], are given
by

u(0; y) = 1:5 for 0¡y¡1

u(1; y) =−0:5 for 0¡y¡1

u(x; 0) = 1:5− 2x for 0¡x¡1

The exact solution is given as shown in Figure 8(b), in which region A and region B are
separated by an oblique shock originating at (x; y)= (0:75; 0:5) and in region C there is a
smooth variation from left to right.
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Figure 8. Exact solutions for the 2D inviscid Burgers’ equation for test case 2.

(a) (b)

Figure 9. Solutions for 2D inviscid Burgers’ equation on uniform distribution of points, for test case 2:
(a) �rst-order accurate solution; and (b) second-order accurate solution.

The exact solution uex(x; y) is given by

uex(x; y) = 1:5 if (x; y) is in region A

uex(x; y) =−0:5 if (x; y) is in region B

uex(x; y) =
1:5− 2x
1− 2y if (x; y) is in region C

Numerical experiments are done using the �rst- and second-order accurate versions of the
grid-free relaxation scheme both on uniform distribution of 64×64 points and on a distribution
of 4825 points obtained from the triangular mesh generator. Figures 9(a) and (b) show the
�rst- and second-order accurate solutions on the uniform distribution points, where as Figures
10(a) and (b) show the �rst- and second-order accurate solutions on the points obtained from
the triangular mesh generator. For this test case and the previous one, on the top boundary,
Neumann boundary condition is applied in the least squares framework, the details of which
are available in Reference [12].
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(a) (b)

Figure 10. Solutions for 2D inviscid Burgers’ equation on distribution of points ob-
tained by the unstructured mesh generator, for test case 2: (a) �rst-order accurate

solution; and (b) second-order accurate solution.

6.3. 1D Euler equations

Test case 3: 1D shock tube problem (Sod’s test case).
The initial conditions are given by

�L = 1:0 �R =0:125

uL = 0:0 uR =0:0

pL = 1:0 pR =0:1

(136)

where the subscripts L and R indicate the left and right sides of the diaphragm, respectively.
This problem is solved on a uniform distribution of 200 points and also on a random

distribution of 200 points. The arbitrary distribution of points are obtained from a random
number generator. Both �rst- and second-order accurate versions of the grid-free relaxation
scheme are tested on both uniform and arbitrary distribution of points and the results are
presented here. Figure 11 shows the �rst-order solution on uniform distribution of points
and the solution is very dissipative. The second-order scheme improves the solution and is
shown in Figure 12. Similarly, Figures 13 and 14 show the �rst- and second-order solutions,
respectively, on an arbitrary distribution of points.

6.4. 2D Euler equations

Test case 4: Shock re�ection problem.
A schematic of the regular shock re�ection problem is shown in Figure 15. In Figure 15,

AB is a solid wall, and an incident shock at an angle � hits the solid wall and gets re�ected.
The �ow is fully supersonic in this case. Along the left boundary AD an in�ow boundary
condition is applied. Along the top boundary CD the post shock values are imposed. This
way the shock is introduced at the corner D. Along the right boundary BC the supersonic
out�ow boundary condition is applied, i.e. the state variables are extrapolated from inside.
Along the solid wall AB, wall boundary condition, which is described in the previous section
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Figure 11. First-order accurate solution for shock tube problem on uniform
distribution of points, for Sod’s test case.

is applied. The numerical values considered for this test case are given below.

In�ow Post shock
� 1:0 1:69997
u 2:9 2:61934
v 0:0 −0:50633
p 1=1:4 1:52819

(137)

This problem is solved using �rst- and second-order accurate versions of the grid-free relax-
ation scheme on uniform distribution of points and also on a distribution of points obtained
from the triangular mesh generator. A domain of 3 × 1 is chosen for this problem. Three
di�erent sizes (30 × 10; 60 × 20 and 120 × 40) of uniform distribution of points are used
for testing the scheme. Similarly, three di�erent sizes (391; 1452 and 5667) of distribution of
points obtained from the triangular mesh generator are also used for testing the scheme. But,
only some of the results are presented here (see Reference [11] for full details). The contour
plots of pressure on two di�erent distributions of points are shown in Figures 16 and 17.
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Figure 12. Second-order accurate solution for shock tube problem on uniform
distribution of points, for Sod’s test case.

Adaptation: To demonstrate the power of the grid-free scheme, adaptation is done for the
shock re�ection problem and also for the next test case, i.e. internal �ow over a ramp in a
channel. For adaptation the bi-dimensional anisotropic mesh generator and adaptation software
(BAMG), developed by INRIA [28], which is freely available in the web is used. Figures
18 and 19 show the distribution of points and solutions, respectively, at di�erent levels of
adaptation, for the shock re�ection problem. We can see a lot of improvement in the solution
at each level of adaptation. The residue history for the adapted solution is shown in Figure 20.
Test case 5: Internal �ow over a ramp in a channel

In�ow Mach number = 2:0

Ramp angle = 15◦

Internal �ow over a ramp in a channel has a shock, two re�ected shocks, an expansion fan
and interaction of a shock wave and an expansion fan. The bottom and the top boundaries
are considered as solid walls and the wall boundary condition is applied along these two
boundaries. Along the left boundary in�ow boundary condition is applied. Along the right
boundary supersonic boundary condition is applied, i.e. the state variables are extrapolated
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Figure 13. First-order accurate solution for shock tube problem on arbitrary
distribution of points, for Sod’s test case.

from inside. For this problem second-order scheme is used and the solution is obtained on
four distributions of points with 3952; 7868; 15 329 and 31 138 points, respectively, all being
obtained from the triangular mesh generator Delaundo [26]. Pressure contours for the second-
order solution on the four distributions of points are given in Figure 21. Adaptation is done
for this case also and the adapted distribution of points and solutions are given in Figures
22 and 23. In this case in each level of adaptation there is a signi�cant improvement in the
solution. Residue history for the adapted case is shown in Figure 24.

6.5. Cost and accuracy of the grid-free relaxation scheme

The grid-free relaxation scheme updates more number of variable than the usual schemes due
to the introduction of an additional equation in the relaxation system and introduction of arti-
�cial variables. However, a relaxed scheme can be obtained by summing up the characteristic
variables and discrete Maxwellians, by substituting �=0. This strategy has not been used in
the current study but it has been observed and used in the later studies. For a simple 1D case
the scheme has been compared with Roe’s scheme and it is found that the present scheme
takes double the amount of time that Roe’s scheme takes. This is expected as the number of
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Figure 14. Second-order accurate solution for shock tube problem on arbitrary
distribution of points, for Sod’s test case.
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Figure 15. Schematic for the shock re�ection problem.

variables updated in the current scheme is almost double compared to Roe’s scheme. But for
a relaxed scheme the number of variables updated will be equal to that of a Roe’s scheme and
hence the cost should be almost equal to that of a Roe’s scheme. The relaxed scheme in the
framework of grid-free relaxation scheme will be used in future studies. The real advantage
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(a) (b)

Figure 16. Solutions for the shock re�ection problem on uniform distribution of 120 × 40 points, for
test case 4: (a) �rst-order accurate solution; and (b) second-order accurate solution.

(b)(a)

Figure 17. Solutions for the shock re�ection problem on 5667 points obtained from a triangular mesh
generator, for test case 4: (a) �rst-order accurate solution; and (b) second-order accurate solution.
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Figure 18. Distribution of points for the shock re�ection problem at di�erent levels
of adaptation: (a) initial distribution of 5667 points; (b) 5740 points after �rst level;

(c) 10 000 points after second level; and (d) 12 000 points after third level.

of the present scheme lies in the reduction of time and e�ort that would be otherwise spent
in generating meshes for complicated geometries.
First-order accurate results in the above test cases show high dissipation. This is expected

as the �rst-order accurate scheme is equivalent to Lax–Fredrichs scheme, which is known
to have the highest dissipation. However, the focus of the current study is to demonstrate
the capability of the newly developed grid-free scheme within the framework of simple
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(a) (b)

(c) (d)

Figure 19. Solutions for the shock re�ection problem, at di�erent levels of adapta-
tion: (a) initial solution; (b) after �rst level of adaptation; (c) after second level of

adaptation; and (d) after third level of adaptation.
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Figure 20. Residue history for the adapted solution for the shock re�ection problem.

relaxation systems. A low-dissipation method in the framework of relaxation schemes is devel-
oped by Raghurama Rao and Balakrishna [29] in which the discontinuities are capture exactly
by enforcing Rankine–Hugoniot condition at the discrete level. In another study by Anand Tri-
pathy and Raghurama Rao [30, 31] a relaxation scheme is developed to solve Navier–Stokes
equations. Modifying the grid-free relaxation scheme to reduce the dissipation and to solve
Navier–Stokes equations, based on the concepts of the above-mentioned references, are the
subjects of a future study.
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(a) (b)

(c) (d)

Figure 21. Pressure contours for the internal �ow over a ramp in a channel: (a) solution on 3952 points;
(b) solution on 7868 points; (c) solution on 15 329 points; and (d) solution on 31 138 points.
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Figure 22. Distribution of points for the internal �ow over a ramp, at di�erent levels of adapta-
tion: (a) initial distribution of 3952 points; (b) 3674 points after �rst level of adaptation; and

(c) 10 841 points after second level of adaptation.

7. CONCLUSIONS

A new grid-free upwind relaxation scheme is developed to simulate inviscid compressible
�ows numerically. The scheme is grid free in the sense that it works on any arbitrary dis-
tribution of points. All that the solver needs is the coordinates of a set of neighbouring
nodes around each node in the domain. Apart from being grid free, another basic advantage
of the scheme is that it avoids complicated �ux splitting schemes and time-consuming
Riemann solvers, which often get into troubles. E�orts required to generate grids for complex
geometries can be reduced, as the scheme is grid free.
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(a) (b)

(c)

Figure 23. Solutions for the internal �ow over a ramp, at di�erent levels of adaptation: (a) initial
solution; (b) after �rst level of adaptation; and (c) after second level of adaptation.
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Figure 24. Residue history for the adaptation case for the internal �ow over ramp.

The �rst- and second-order accurate versions of the scheme are used to solve scalar and
vector conservation laws for di�erent test problems in one and two space dimensions. To
show the grid-free nature of the scheme in 1D, the scheme is tested on uniform distribution
of points as well as arbitrary distribution of points, which are obtained from a random number
generator. In 2D the scheme is tested on a distribution of points obtained from a structured
mesh as well as from an unstructured mesh and the results demonstrate the usefulness of
the scheme in capturing the �ow features e�ciently. To explore the power of the grid-free
scheme for adaptation, solution-based adaptation is done for some test cases in 2D. The
results demonstrate that the scheme is quite suitable for adaptation. A new solid-wall boundary
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condition is developed and its usefulness is demonstrated through application to the above
test problems.
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